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Abstract

A method is proposed to detect the number, locations and heights of jump points of the derivative in the regressive
model �i = f(�i) + �i, by checking if the empirical indirect wavelet coe4cients of data have signi!cantly large absolute
values across !ne scale levels. The consistency of the estimators is established and practical implementation is discussed.
Some simulation examples are given to test our method. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

The detection of jump points in nonparametric models has attracted increasing interests. Since jump points
usually describe sudden localised changes, they are very useful in modelling practical problems arising in
!elds such as quality control, economics, medicine, signal and image processing, phonetic identi!cation, and
physical sciences.
There is a great amount of statistical literature on jump detection, see for example, Basseville (1988),

Basseville and Nikiforov (1993), Li and Xie (1999,2000). Yin (1988) proposed strongly consistent estimators
of the number, locations, and corresponding jump heights of the jump points by using the one-sided moving
average method. MAuller (1992) estimated the location of a jump and its size by boundary kernels. Wu and
Chu (1993) gave strongly consistent estimators of jumps based on the kernel method. Wang (1995) showed
interesting results on the jump point detection and gave a detecting procedure by wavelets. All the above
results are based on the assumption of uncorrelated white noise or Gaussian processes. Ogden and Parzen
(1996) transformed the change point problem into a nonparametric regression problem, but their starting point
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was a set of independent observations and Gaussian properties were used. As pointed out in Johnstone and
Silverman (1997), the case of correlated noise has not been studied in great detail within the context of
wavelets, though Johnstone (1999) considered the wavelet threshold estimation for data with correlated noise.
They discussed both short and long range dependent noises and showed several interesting examples. However,
their theoretical framework in handling the correlated noise still needs the Gaussian assumption.
Wang (1999) assumes the fractional Gaussian noise model

Y (dx) = (Kf)(x) dx + 	2−2HBH (dx); 06x61; (1.1)

where f(x) is a deterministic function de!ned on [0,1] with several jumps and sharp cusps, K is a linear
transformation, 	 is the noise level, and BH (dx) is a fractional Gaussian noise. With the total observation
Y (x) from model (1.1), Wang gave consistent estimators for the number and locations of jumps and sharp
cusps of f(x) via wavelet-vaguelette decomposition.
However, in many practical situations the observed data are obtained through a random design manner.

More precisely, the observation model can be written as follows:

Yi = f(xi) + �i; i = 1; 2; : : : ; n; (1.2)

where f(t) is a deterministic function de!ned on interval [0; 1]; xi are random-signed sampling points; {�i} is
a random noise; {Yi; xi} are the observed data and n is the data length. Obviously, model (1.2) is not covered
by the discrete version of model (1.1). In this paper we will focus on model (1.2). Besides establishing
consistent estimators for the number and locations of jumps we also give estimators for heights of jumps
which were not considered in Wang (1999).
The rest of this paper is organised as follows. Section 2 introduces the basic model and some notations and

assumptions which are necessary in the sequel. Section 3 gives the main results of this paper and numerical
simulations are given in Section 4. All the proofs are collected in the appendix.

2. Preliminaries

In this paper, we consider the following observation model:

�i = f(�i) + �i; i = 1; 2; : : : ; n: (2.1)

For our discussions, we need the following assumptions.
(A1) f(x) is continuous on [0; 1]. With exception to q points in (0,1), i.e., ∃0¡t1 ¡t2 ¡ · · ·¡tq ¡ 1, the

derivatives of f(x) exist. And if we write s(x)=(d=dx)f(x), the derivative s(x) has jumps at tk (k=1; 2; : : : ; q),
and satis!es

sup
x �=tj

j=1;:::;q

∣∣∣∣ ddx s(x)
∣∣∣∣¡+∞: (2.2)

(A2)

• {�i} is a weakly stationary sequence with zero mean and its autocovariance functions �k are summable:∑∞
k=−∞ |�k |¡∞ where �k = E(�i�i+k).

• {�i} is a strictly stationary sequence with zero mean. The p.d.f. of �1 g(x) is bounded away from zero
and in!nity on some open set which contains interval [0,1], i.e., there exist an open set U and a positive
number M1 such that U ⊃[0,1], and

1
M1

6 g(x)6 M1; x ∈ U:
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• There exists a positive number M2 such that under �1 = x, the conditional p.d.f. of �l, gl(y|x); satis!es
1
M2

6 gl(y|x)6 M2; y; x ∈ U:

• {�i} is strongly mixing with �u = O(�u); (0¡�¡ 1) where

�u = sup
A∈Ft ;B∈Ft+u

{|P(AB)− P(A)P(B)|};

Ft =F(�k ; k 6 t); Ft+u =F(�k ; k ¿ t + u):

Here F(�k ; k 6 t) and F(�k ; k ¿ t + u) represent the "-algebras generated by {�k ; k 6 t} and
{�k ; k ¿ t + u}, respectively.

• {�i} and {�i} are mutually independent.
We choose wavelet  (x) and scale function $(x) satisfying the following conditions.
(A3)

• Both  (x) and $(x) have !nite supports, say, [ − "; "]; " ¿ 1: And both have derivatives with bounded
variation. For convenience, we use other symbols to denote the derivatives:

%(x),
d
dx

 (x); &(x),
d
dx

$(x): (2.3)

•  (x) and $(x) satisfy the usual conditions∫ +∞

−∞
 (x) dx = 0;

∫ +∞

−∞
$(x) dx = 1: (2.4)

• We require  (x) to satisfy the following additional constraint:

inf
0¡a¡1=2

{∣∣∣∣
∫ −a

−∞
 (x) dx

∣∣∣∣ ;
∣∣∣∣
∫ +∞

a
 (x) dx

∣∣∣∣
}
= b0 ¿ 0: (2.5)

As Wang (1995) pointed out, the localised information of trend function is provided by its wavelet coe4-
cients at !ne scales. More precisely, at !ne scales, the wavelet coe4cients nearby the jumps are signi!cantly
larger than those a little farther away from the jumps. Therefore, the jumps can be detected by checking
the absolute values of wavelet coe4cients. When the resolution level gets large, there may be several large
wavelet coe4cients near a single jump. So how to combine those wavelet coe4cients which have large ab-
solute values into suitable subgroups is a key point. Each subgroup should be regarded as the result from a
single jump. Because the model considered by Wang (1995) is diOerent from ours so his methods cannot be
used directly to our model (2.1). Consequently, we give a special kind of division for integer sets which is
used to determine whether nearby large coe4cients belong to diOerent jumps or not.
Let G be an integer set consisting of !nite elements and 	 be a positive number, G={g1; g2; : : : ; gm}, where

g1 ¡g2 ¡ · · ·¡gm. Put m1 =max{k: 16 k 6 m; gk 6 g1 + 	}; if m1 ¡m, then put m2 =max{k: m1 ¡k6
m; gk 6 gm1+1 + 	}; if m2 ¡m, then de!ne m3 in a similar way, and so on. At the end we can get a series
of integers {mk : 16 m1 ¡m2 ¡ · · ·¡mq = m}.
Let G1 = {gk : 16 k 6 m1}; G2 = {gk : m1 ¡k 6 m2}; : : : ; Gq = {gk : mq−1 ¡k 6 mq} and put

G =
q⋃

k=1

Gk: (2.6)

For example, G = {2; 5; 6; 8; 11; 12; 13; 15}, 	 = 3, then m1 = 2; m2 = 4; m3 = 7; m4 = 8: Thus, we have
G1 = {2; 5}; G2 = {6; 8}; G3 = {11; 12; 13}; G4 = {15} and the 3-division of G is G =

⋃4
k=1 Gk .

We will call (2.6) in the sequel the 	-division of the set G.
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3. Main results

Suppose {(�i; �i); 1 6 i 6 n} is the observed data from model (2.1). Before establishing estimators we
need to introduce some additional symbols and notations.
For every positive number x (0¡x¡ 1), we write

N , [n1=3]; -n , n−1=3; Dn(x), {i: 16 i 6 n; |�i − x|6 -n}; (3.1)

where [ · ] presents the integer part. Let nx denote the number of elements contained in Dn(x), and for
convenience we write nk=N as nk (16 k 6 N ).
Now, we construct the indirect empirical wavelet and scale coe4cients as follows:

�j;k =
1
N

N∑
i=1

%j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

�l

=
1
N

N∑
i=1

%j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

(f(�l) + �l)

, �(1)j; k + �(2)j; k ; (3.2)

/j;k =
1
N

N∑
i=1

&j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

�l

=
1
N

N∑
i=1

&j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

(f(�l) + �l)

, /(1)
j; k + /(2)

j; k : (3.3)

Here we use 0j;k(x) to denote the dialation and translation of any function 0(x):

0j;k(x) = 2j=20(2jx − k): (3.4)

The aim in this section is to establish estimators for the jump number q, locations tl (1 6 l 6 q) and
jump heights hl (16 l6 q), where

hl , s(tl + 0)− s(tl − 0), lim
x↓tl

s(x)− lim
x↑tl

s(x): (3.5)

The coe4cients set {�j;k} contains the key information about jumps of s(x), i.e., tl (l= 1; : : : ; q): When j
is large enough and !xed, the absolute value of �j;k at such k that k=2j near tl is relatively larger than that
of �j;k at other k whereas k=2j is farther away from tl. This has led us to propose estimators for the number
and locations of jump points by examining the properties of the set {�j;k}. Based on the location estimators
we can then establish jump heights by using the coe4cient set {/j;k}. The main results of this section are
summarized in the following two theorems.

Theorem 3.1. Assume (A1)–(A3) are true; for any 9xed number c¿ 0; j= jn is chosen in such a way that
jn → +∞ (n → +∞) and 23jn 6 N; where N is given by (3:1). Write

G(j) = {k: 2j=4 6 k 6 2j − 2j=4 and |�j;k |¿ c2−(13=8) j}: (3.6)

If G(j) is not empty; by the 2j=2-division G(j) is partitioned into p̂ parts

G(j) =
p̂⋃

l=1

Gl(j): (3.7)
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De9ne

q̂=

{
p̂ if G(j) is not empty;

0 if G(j) is empty:
(3.8)

If kl denotes such an element of Gl(j) that |�j;kl |=maxk∈Gl( j){|�j;k |}; set
t̂l =

kl
2j

; l= 1; : : : ; q̂: (3.9)

Then
(1) q̂= q+ op(1) (n → +∞); i.e.; limn→∞ P(q̂= q) = 1;
(2) limn→∞ P(|t̂l − tl|¿ 2−j=2) = 0 (16 l6 q).

Theorem 3.2. Under the conditions and notations of Theorem 3:1; write

k(+)
l = kl + 2j=2; k(−)

l = kl − 2j=2 (3.10)

set

ĥl = 2(3=2) j(/j;k(−)
l

− /j;k(+)
l
): (3.11)

Then ĥl = hl + op(1) (n → +∞); i.e.; for every positive number 	¿ 0; we have

lim
n→∞P(|ĥl − hl|¿	) = 0 (16 l6 q): (3.12)

4. Numerical simulations

In this section we carry on some Monte Carlo simulations to investigate the validity of the theorems in the
previous section. It should be pointed out that Theorem 3.1 cannot be applied directly due to the constant c.
But Theorem 3.1 does provide the key information which can be used in practical implementation. Theorem
3.1 asserts that the coe4cients near jumps are signi!cantly larger than those a little far away from them across
!ne scales. Based on this fact, we determine the jump points, in practice, by observing those coe4cients whose
absolute values are prominently large at !ne scales. We only focus on the number and locations of jump points
in our simulations.
The simulation model is as follows:

�i = f(�i) + �i; i = 1; 2; : : : ; n; (4.1)

where the regression function f(t) (when t ¿ 1 or ¡ 0 de!ne f(t) = 0) is given by either (4.2) or (4.3):

f(t) =

{
0:5 cos(27t); 06 t ¡ 0:4;

0:5 cos(47t) + 0:5 cos(0:87)− 0:5 cos(1:67); 0:46 t 6 1;
(4.2)

f(t) =




−2t; 06 t ¡ 0:3;

3t − 1:5; 0:36 t ¡ 0:7;

−2t + 2; 0:76 t 6 1:

(4.3)

{�i} is the AR(1) noise generated by the following mechanism:

�i = 0:5�i−1 + "ei; (4.4)

in which {ei} is an i.i.d. N(0,1) sequence. And the random designed sampling {�i} is chosen as i.i.d. N(0.5,
0.25), independent with {�i}.
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Fig. 1.

The wavelet  (t) and the scale function $(t) are given as follows:

 (t) =




t4 − 2t3 + t2; 06 t 6 1;

−t4 − 2t3 − t2; −16 t ¡ 0;

0; |t|¿ 1;

(4.5)

$(t) =

{
15
16 (t

4 − 2t2 + 1); −16 t 6 1;

0; |t|¿ 1:
(4.6)

It is easily veri!ed that  (t) and $(t) satisfy assumption (A3) Consequently, the “indirect” wavelet %(t) and
scale function &(t) are obtained from (2.3).
Fig. 1 displays a typical simulation result for model (4.1) with regression function (4.2), where " = 0:01

and data length n=4096. In which (a) is the plot of data, (b), (c) and (d) are plots (we will call it “detecting
plot” for short) of the absolute indirect empirical wavelet coe4cients (|�j;k |) at resolution levels j = 5; 6
and 7, respectively. From Fig. 1 we !nd that the coe4cients with signi!cantly large values across levels
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Fig. 2.

j = 5; 6; 7 correspond to almost the same location, near 0:4 which is the real jump. More precisely, at level
j=5 the maximum value of coe4cients is that located at 13=25 =0:406, and that located at 26=26 =0:406 and
51=27 = 0:398 at levels j = 6 and 7, respectively. Furthermore, Fig. 1 indicates that there is only one jump
point, which coincides the real situation.
Similarly, a typical simulation result is shown in Fig. 2, where the regression function is chosen as (4.3)

and with "=0:01 data length n=4096. It is easy to see that detecting plots with j=5; 6 draw comparatively
the same conclusion: there are two jumps with locations near 0:3 and 0:7. At level j = 5 the jump locations
are 10=25 = 0:313 and 22=25 = 0:688, and at level j = 6 the locations are 19=26 = 0:299 and 45=26 = 0:703.
But at level j = 7 it seems that no clear result can be drawn from the detecting plot.
In our simulation studies we found that the noise level (") aOected detecting plots badly. When noise levels

increase the detecting plot become worse (i.e., dimmer to draw conclusions).
In practical implementation, we agree with Wang (1995). The wavelet coe4cients should be checked at

several resolution levels. Under common data lengths, resolution levels j= 5; 6; 7 are usually considered, and
only when diOerent resolution levels show similar results can inferences be drawn. As for jump heights, we
found in simulations that the estimators were quite unstable so the results are not given here.
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Appendix

This section is devoted to the proofs of Theorems 3.1 and 3.2, the main results of this paper. We proceed
in stages through a series of lemmas to the proofs. Before presenting lemmas, we introduce some necessary
symbols and notations which are needed in this section. For arbitrary x ∈ (0; 1), -¿ 0 and positive integer j,
write

I(x; -; j),
{
k:
∣∣∣∣ k2j − x

∣∣∣∣6 -
2
; k = 0; 1; 2; : : : ; 2j − 1

}
;

9(+)(x; -; j),
{
k: x +

-
2
6

k
2j
6 x +

3
2
-; k = 0; 1; 2; : : : ; 2j − 1

}
;

9(−)(x; -; j),
{
k: x − 3

2
-6

k
2j
6 x − -

2
; k = 0; 1; 2; : : : ; 2j − 1

}
: (A.1)

Lemma A.1. Assume {�i} satis9es Assumption (A2); Dn(x) and nx are de9ned as (3:1). Then there exists
a positive number c0 ¿ 0 such that

lim
n→∞P(:n) = 1; (A.2)

where :n = {nx ¿ c0n2=3; ∀x ∈ [0; 1]}.

This lemma is a slight modi!cation of Lemma 7 in Truong and Stone (1992), so its proof is omitted here.
Lemma A.1 shows that when sample length n is very large there will be enough �i’s in the neighborhood of
every point x ∈ [0; 1].

Lemma A.2. Suppose h(x) is a function de9ned on [0; 1] with bounded variation; m is a positive integer.
Then we have∣∣∣∣∣

∫ 1

0
h(x) dx − 1

m

m∑
i=1

h
(

i
m

)∣∣∣∣∣6 ;
m
; (A.3)

where ;= V 1
0 (h) is the total variation of h(x) on [0; 1].

Proof. This is just Lemma P5:1 in Brillinger (1981).

Lemma A.3. Assume (A1) and (A3) are true. With the notations of (3:4) and (A:1); there exist positive
constants c1; c2 so that when j is large enough the following are valid:
(1)

inf
k∈⋃q

l=1 I(tl;2
−j ; j)

{∣∣∣∣∣
∫ 1

0
s(x) j;k(x) dx

∣∣∣∣∣
}
¿ c12−j=2; (A.4)

(2)

sup
k �∈⋃ q

l=1 I(tl;2
−j=2 ; j)

2j=46k62j−2j=4

{∣∣∣∣∣
∫ 1

0
s(x) j;k(x) dx

∣∣∣∣∣
}
6 c22−3j=2: (A.5)

Proof. By variable change in integration, we have∫ 1

0
s(x) j;k(x) dx = 2−j=2

∫ 2j−k

−k
s
(
x + k
2j

)
 (x) dx:
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(1) If k ∈ ⋃q
l=1 I(tl; 2

−j; j), say, k ∈ I(tl; 2−j; j) i.e., |k=2j − tl|6 2−j=2. When j is su4ciently large, then
[− k; 2j − k] ⊃ [− "; "], with (2.2) and (2) we have∫ 1

0
s(x) j;k(x) dx= 2−j=2

∫ "

−"
s
(
x + k
2j

)
 (x) dx

= 2−j=2
∫ 2j tl−k

−"
s
(
x + k
2j

)
 (x) dx + 2−j=2

∫ "

2j tl−k
s
(
x + k
2j

)
 (x) dx

= 2−j=2 (s(tl + 0)− s(tl − 0))
∫ "

2j tl−k
 (x) dx + O(2−(3=2) j):

With (2.5), we deduce that∣∣∣∣∣
∫ 1

0
s(x) j;k(x) dx

∣∣∣∣∣¿ c12−j=2 (j su4ciently large):

For instance, c1 can be chosen as c1 = (b0=2)inf 16l6q|s(tl + 0)− s(tl − 0)|¿ 0: So (A.4) is proved.
(2) If k ∈ ⋃q

l=1 I(tl; 2
−j=2; j) and 2j=4 6 k 6 2j − 2j=4, when j is large enough, then there are no jump

points between (x + k)=2j and k=2j for every x (−"6 x 6 ").∫ 1

0
s(x) j;k(x) dx= 2−j=2

∫ "

−"
s
(
x + k
2j

)
 (x) dx

= 2−j=2
∫ "

−"

(
s
(
x + k
2j

)
− s
(

k
2j

))
 (x) dx

= 2−3j=2
∫ "

−"
s′(0) (x) dx:

Set c2 = (
∫ "
−" |x (x)| dx)(supx �=tj |(d=dx)s(x)|)¿ 0; then | ∫ 1

0 s(x) j;k(x) dx| 6 c22−3j=2: So, the lemma is
established.

Lemma A.4. Assume (A1) and (A3) are true. With the notations of (A:1); when j is large enough we have
(1) If k ∈ 9(+)(tl; 2−j=2; j) (16 l6 q); the equation below is valid uniformly (with respect to k).∫ 1

0
s(x)$j;k(x) dx = 2−j=2s(tl + 0) + O(2−j): (A.8)

(2) If k ∈ 9(−)(tl; 2−j=2; j) (16 l6 q); the equation below is valid uniformly (with respect to k).∫ 1

0
s(x)$j;k(x) dx = 2−j=2s(tl − 0) + O(2−j): (A.9)

Proof. k ∈ 9(+)(tl; 2−j=2; j) means tl + (12)2
−j=2 6 k=2j 6 tl + (32)2

−j=2. When j is su4ciently large, we have

∫ 1

0
s(x)$j;k(x) dx= 2−j=2

∫ 2j−k

−k
s
(
x + k
2j

)
$(x) dx

= 2−j=2
∫ "

−"

(
s
(
x + k
2j

)
− s(tl + 0)

)
$(x) dx + 2−j=2s(tl + 0)

= 2−j=2s(tl + 0) + O(2−j):
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In the above we have used the fact that
∫ "
−" $(x) dx = 1. Therefore (A.8) is valid and (A.9) can be proved

exactly in the same way.

Lemma A.5. Assume (A1)–(A3) are true. With the notations of (3:2) and (3:3); j = jn is chosen in such
a way that jn → +∞ (n → +∞) and 23jn 6 N . Then; there exist positive constants d1; d2 such that the
following are valid:

lim
n→∞P

(
inf

k∈⋃q
l=1 I(tl;2

−j ; j)
|�(1)j; k |¿ d12−(3=2) j

)
= 1; (A.10)

lim
n→∞P

(
sup

k �∈⋃q
l=1 I(tl;2

−j=2 ; j); 2j=46k62j−2j=4
|�(1)j; k |6 d22−(5=2) j

)
= 1: (A.11)

Proof. Lemma A.1 and the notations of (3.2) imply that on :n,

�(1)j; k =
1
N

N∑
i=1

%j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

f(�l)

=
1
N

N∑
i=1

%j;k

(
i
N

)
f
(

i
N

)
+

1
N

N∑
i=1

%j;k

(
i
N

)
1
ni

∑
l∈Dn(i=N )

(
f(�l)− f

(
i
N

))
:

With Lemma A.2, the notations of (3.1) and the !nite support of  (x), we have

�(1)j; k =
∫ 1

0
f(x)%j;k(x) dx + O

(
2j=2

N

)

=
∫ 1

0
f(x)(2−j j;k(x))′ dx + O

(
2j=2

N

)

=−2−j
∫ 1

0
s(x) j;k(x) dx + O

(
2j=2

N

)
:

Lemma A.3 and the above equations then imply that

inf
k∈⋃ q

l=1 I(tl;2
−j ; j)

|�(1)j; k |¿ c12−(3=2) j −
∣∣∣∣O
(
2j=2

N

)∣∣∣∣= c12−(3=2) j − ∣∣O(2−(5=2) j)
∣∣¿ d12−(3=2) j;

sup
k �∈⋃ q

l=1 I(tl;2
−j=2 ; j)

2j=46k62j−2j=4

|�(1)j; k |6 c22−(5=2) j +
∣∣∣∣O
(
2j=2

N

)∣∣∣∣6 c22−(5=2) j +
∣∣O (2−(5=2) j)∣∣6 d22−(5=2) j:

The above two relations and Lemma A.1 yield the validity of (A.10) and (A.11).

Lemma A.6. Under the conditions of Lemma A:5; there exists positive constant c3 such that the following
are true:

lim
n→∞P


 q⋂

l=1

⋂
k∈9(+)(tl;2−j=2 ; j)

|/(1)
j; k + 2−(3=2) js(tl + 0)|6 c32−2j


= 1; (A.12)
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lim
n→∞P


 q⋂

l=1

⋂
k∈9(−)(tl;2−j=2 ; j)

|/(1)
j; k + 2−(3=2) js(tl − 0)|6 c32−2j


= 1: (A.13)

Proof. With Lemma A.4 and following the same arguments in the proof of Lemma A.5, there exists a positive
constant c3 ¿ 0, when n is quite large the following relation holds:




q⋂
l=1

⋂
k∈9(+)(tl;2−j=2 ; j)

|/(1)
j; k + 2−(3=2) js(tl + 0)|6 c32−2j


 ⊃ :n:

Lemma A.1 yields (A.12) and (A.13) can be proved similarly.

Lemma A.7. Assume (A2) and (A3) are true. With notations of (3:2) and (3:3) j = jn is chosen in such a
way that jn → +∞ (n → +∞) and 23jn 6 N . Then; we have

max
06k62j−1

(|�(2)j; k |; |/(2)
j; k |) = op(2−(7=4) j) (n → ∞): (A.14)

Proof. With (3.2) we have �(2)j; k = (1=N )
∑N

i=1 %j;k(i=N )1=ni
∑

l∈Dn(i=N ) �l. With notations of (3.1), (3.2), and
the boundness of the p.d.f. g(x) of �1, there exists a positive constant c4 ¿ 0 such that

E


 ∑

l∈Dn(i=N )

�l




2

= E

(
n∑

l=1

I{|�l−i=N |6-n}�l

)2

=
n∑

l=1

n∑
m=1

E(I{|�l−i=N |6-n}I{|�m−i=N |6-n})E(�l�m)

6
n∑

l=1

n∑
m=1

E(I{|�l−i=N |6-n})|�l−m|

= n

( ∞∑
m=−∞

|�m|
)

P(|�1 − i=N |6 -n)6 c4n2=3:

Noting that ni ¿ c0n2=3 (i = 1; : : : ; N ) on set :n and the !nite support of %(x), so

E(I:n�
(2)
j; k )

2 =
1
N 2

N∑
i=1

N∑
m=1

%j;k

(
i
N

)
%j;k

(m
N

)
E


I:n

1
ni

∑
l∈Dn(i=N )

�l
1
nm

∑
l∈Dn(m=N )

�l




6
(

1
c0n2=3

)2 1
N 2

N∑
i=1

N∑
m=1

∣∣∣∣%j;k

(
i
N

)
%j;k

(m
N

)∣∣∣∣

E


 ∑

l∈Dn(i=N )

�l




2



1=2
E


 ∑

l∈Dn(m=N )

�l




2



1=2
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6
(

1
c0n2=3

)2 1
N 2

N∑
i=1

N∑
m=1

∣∣∣∣%j;k

(
i
N

)
%j;k

(m
N

)∣∣∣∣ c4n2=3

=
(
c4
c20

n−2=3
)

1
N 2

(
N∑
i=1

∣∣∣∣%j;k

(
i
N

)∣∣∣∣
)2

= O(2−j=2n−2=3):

So, there exists a positive constant c5 ¿ 0 such that max06k62j−1(E(I:n�
(2)
j; k )

2)6 c5n−2=3:
For arbitrary 	¿ 0,

P
(

max
06k62j−1

(2(7=4) j|�(2)j; k |)¿ 	
)
6 P(:c

n) + P
(

max
06k62j−1

(2(7=4) j|�(2)j; k I:n |)¿ 	
)

6 P(:c
n) +

2j−1∑
k=0

2(7=2) jE(I:n�
(2)
j; k )

2

	2

6 P(:c
n) +

c5
	2
2(9=2) j2−6j → 0 (n → ∞):

This means max06k62j−1(|�(2)j; k |) = op(2−(7=4) j) (n → ∞): Similarly we can verify that max06k62j−1(|/(2)
j; k |) =

op(2−(7=4) j) (n → ∞):

Proof of Theorem 3.1. We introduce several events as follows:

B1 =
{

inf
k∈⋃q

l=1 I(tl;2
−j ; j)

|�(1)j; k |¿ d12−(3=2) j
}

;

B2 =

{
sup

k �∈⋃q
l=1 I(tl;2

−j=2 ; j); 2j=46k62j−2j=4
|�(1)j; k |6 d22−(5=2) j

}
;

B3 =
{

max
06k62j−1

(|�(2)j; k |; |/(2)
j; k |)¡ 2−(7=4) j

}
:

From Lemmas A.5 and A.7, it is seen that limn→∞ P(B1B2B3) = 1. On B1B2B3, k ∈ ⋃q
l=1 I(tl; 2

−j; j) implies
|�j;k | = |�(1)j; k + �(2)j; k | ¿ d12−(3=2) j − 2−(7=4) j ¿ c2−(13=8) j; and similarly, k ∈ ⋃q

l=1 I(tl; 2
−j=2; j) and 2j=46k6

2j − 2j=4 imply |�j;k |¡c2−(13=8) j: So

G(j) = ∅ and
q⋃

l=1

I(tl; 2−j; j) ⊂ G(j) ⊂
q⋃

l=1

I(tl; 2−j=2; j):

By the 2j=2-division of G(j), it is easy to see that G(j) is partitioned exactly into q parts:

G(j) =
q⋃

l=1

Gl(j) and I(tl; 2−j; j) ⊂ Gl(j) ⊂ I(tl; 2−j=2; j) (16 l6 q):

Therefore, we have that p̂= q and |t̂l − tl|6 2−j=2, and so

{q̂= q}
q⋂

l=1

{|t̂l − tl|6 2−j=2} ⊃ B1B2B3:
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The above relation asserts that

lim
n→∞P(q̂= q) = 1; lim

n→∞P(|t̂l − tl|¿ 2−j=2) = 0 (16 l6 q):

That !nishes the proof.

Proof of Theorem 3.2. We introduce several events as follows:

B4 =




q⋂
l=1

⋂
k∈9(+)(tl;2−j=2 ; j)

|/(1)
j; k + 2−(3=2) js(tl + 0)|6 c32−2j


 ;

B5 =




q⋂
l=1

⋂
k∈9(−)(tl;2−j=2 ; j)

|/(1)
j; k + 2−(3=2) js(tl − 0)|6 c32−2j


 ;

B6 =
{

max
06k62j−1

(|�(2)j; k |; |/(2)
j; k |)¡ 2−(7=4) j

}
:

On B4B5B6, k ∈ 9(+)(tl; 2−j=2; j) implies

|/j;k + 2−(3=2) js(tl + 0)|= |/(1)
j; k + 2−(3=2) js(tl + 0) + /(2)

j; k |6 c32−2j + 2−(7=4) j ¡ 2−(13=8) j:

Similarly k ∈ 9(−)(tl; 2−j=2; j) implies |/j;k + 2−(3=2) js(tl − 0)|¡ 2−(13=8) j: On B1B2B3 and when n is very
large, q̂= q. With notation of (3.10)

k(+)
l

2j
¿ tl +

(
1
2

)
2−j=2;

k(+)
l

2j
6 tl +

(
3
2

)
2−j=2:

That means k(+)
l ∈ 9(+)(tl; 2−j=2; j). Similarly we can get k(−)

l ∈ 9(−)(tl; 2−j=2; j). Also, on event
⋂6

k=1 Bk and
when n su4ciently large, with (3.11)

ĥl = 2(3=2) j(/j;k(−)
l

− /j;k(+)
l
)

= hl − 2(3=2) j(/j;k(+)
l

+ 2−(3=2) js(tl + 0)) + 2(3=2) j(/j;k(−)
l

+ 2−(3=2) js(tl − 0)):

So

|ĥl − hl|6 2(3=2) j|/j;k(+)
l

+ 2−(3=2) js(tl + 0)|+ 2(3=2) j|/j;k(−)
l

+ 2−(3=2) js(tl − 0)|¡ 2−j=4:

That means {|ĥl − hl|¡ 2−j=4} ⊃ ⋂6
k=1 Bk: With Lemmas A.5–A.7 we see that limn→∞ P(

⋂6
k=1 Bk) = 1, So

lim
n→∞P(|ĥl − hl|¿ 2−j=4) = 0 (16 l6 q):

That ends the proof.
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